Gastrointestinal Clear Cell Sarcoma-Like GI Tumor

- EWS-CREB1
 \[t(2;22)(q32.3;q12)\]
- EWS-ATF1
 \[t(12;22)(q13;q12)\]
Gastrointestinal Stromal Tumor
- Arises from Interstitial Cells of Cajal – Peristalsis Control
- Resemble Smooth Muscle & Schwann Cells
- 95% C-KIT, 98% DOG1, 70% CD34 Positive; C-Kit Mutation
- Carney’s Triad (gastric GIST, paraganglioma, pulmonary chondroma), Neurofibromatosis Type 1, Carney-Stratakis (paraganglioma, GIST), Familial GIST (germline mutation KIT/PDGFRA)
- STI-571: PDGFRA & c-Kit Mutated Tumors
- BRAF (13%), IGF1R (Most), HIF-1A Targets (Carney-Stratakis) - Also EGFR, MET, NY-ESO

Gastrointestinal Stromal Tumors in Pediatrics
- Represent About 1-2% of GISTs
- Age:
 - >10 yrs 60%
 - <1 yr 20%
 - 1-5yr 12%
 - 6-10yr 8%
- F:M Gender Ratio 1.5:1.0
- Stomach (antrum) 52%
- Small Intestine 20%
- Colon/Rectum 20%
- Size
 - <5cm 20%
 - >5-10 cm 28%
 - >10 cm 24%
- Symptoms
 - GI Bleeding, Abdominal Palpable Mass, Abdominal Distention, Intestinal Obstruction
TABLE 1. Number and Frequencies of Histologic Features in Both Sexes. Overall Epitheloid Cell Tumors are Most Frequent, but Spindle-cell Tumors are More Frequent in Boys

<table>
<thead>
<tr>
<th>Feature</th>
<th>Female</th>
<th></th>
<th>Male</th>
<th></th>
<th>Σ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Spindle cells</td>
<td>9</td>
<td>23.1</td>
<td>7</td>
<td>43.8</td>
<td>16</td>
<td>27.1</td>
</tr>
<tr>
<td>Epitheloid cells</td>
<td>20</td>
<td>51.3</td>
<td>4</td>
<td>25.0</td>
<td>24</td>
<td>40.7</td>
</tr>
<tr>
<td>Mixed-cell type</td>
<td>10</td>
<td>25.6</td>
<td>5</td>
<td>31.3</td>
<td>15</td>
<td>25.4</td>
</tr>
</tbody>
</table>

Mimickers of GIST

- **A** Fibromatosis
- **B** Granular Cell Tumor
- **Leiomyoma**
- **Spindle Cell Melanoma**
TABLE 1. Marker Positivity (%)

<table>
<thead>
<tr>
<th>Marker</th>
<th>Positivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD117</td>
<td>95</td>
</tr>
<tr>
<td>CD34</td>
<td>70</td>
</tr>
<tr>
<td>SMA</td>
<td>40</td>
</tr>
<tr>
<td>S100</td>
<td>5</td>
</tr>
<tr>
<td>Desmin</td>
<td>2</td>
</tr>
<tr>
<td>Bcl2</td>
<td>80</td>
</tr>
<tr>
<td>PKCtheta</td>
<td>72–100</td>
</tr>
<tr>
<td>DOG1</td>
<td>98</td>
</tr>
<tr>
<td>WT1</td>
<td>98</td>
</tr>
<tr>
<td>Calretinin</td>
<td>95</td>
</tr>
</tbody>
</table>

TABLE 2. Electron Microscopic Features of GISTs in Children and Young Adults

<table>
<thead>
<tr>
<th>Case #</th>
<th>Type</th>
<th>Cell Processes</th>
<th>Skinoid Fibers</th>
<th>Cell Junctions</th>
<th>Actin Filaments</th>
<th>Neurosecretory Granules</th>
<th>Microtubules</th>
<th>Intermediate Filaments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>Long filopodia “axenome”-like</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>ICP ++ neural-like</td>
<td>–</td>
<td>–</td>
<td>++</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>Long filopodia “axenome”-like</td>
<td>++</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>ICP, rare short microfilament type</td>
<td>–</td>
<td>–</td>
<td>++</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>S</td>
<td>ICP ++ neural-like</td>
<td>–</td>
<td>++</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>S</td>
<td>ICP ++ neural-like</td>
<td>–</td>
<td>–</td>
<td>++</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>S</td>
<td>ICP ++ neural-like</td>
<td>–</td>
<td>–</td>
<td>++</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>S</td>
<td>ICP ++ neural-like</td>
<td>–</td>
<td>–</td>
<td>++</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Case number corresponds to the case number in Table 1. ICP = interdigitation cell process; CR cell process.
Sporadic GIST
- C-Kit & PDGFRA Mutations
 - Rare (10-15%; Most Adults)
 - Gastric & Epithelioid
 - Worse Prognosis
- Carney’s Triad (GIST, Pulmonary Chondroma, Paraganglioma)
 - C-Kit, PDGFRA & SDH Mutations Absent
 - Multicentric GIST
- NF1-Related GIST
 - C-Kit & PDGFRA Mutations Absent
 - Usually Intestinal and Spindled
 - Better Prognosis

C-Kit & PDGFRA Mutations

Table 4. IC₅₀ values obtained by proliferation inhibition studies

<table>
<thead>
<tr>
<th></th>
<th>Imatinib (nmol/L)</th>
<th>Dasatinib (nmol/L)</th>
<th>Sorafenib (nmol/L)</th>
<th>Nilotinib (nmol/L)</th>
<th>Sunitinib (nmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS590</td>
<td>63</td>
<td>27</td>
<td>66</td>
<td>44</td>
<td>276</td>
</tr>
<tr>
<td>WT KIT</td>
<td>3,132</td>
<td>316</td>
<td>910</td>
<td>35</td>
<td>245</td>
</tr>
</tbody>
</table>

KIT & PDGFRA Mutations: All GISTS

- KIT Mutations 70-75%
 - Exon 11 deletions 45%
 - Gastric GIST More Aggressive
 - Exon 11 Substitutions 10-15%
 - Codons 557, 559, 560, 576
 - Exon 11 Duplications 5%
 - Gastric GIST, Favorable Prognosis
 - Exon 9 Duplications 5%
 - ALA-TYR 502-503 Duplication
 - Intestinal GIST – Rare in Gastric GIST
 - Exon 13 Substitutions 1%
 - Exon 17 Substitutions 1%
KIT & PDGFRA Mutations: All GISTs

- PDGFRA Mutations 10-15% (Gastric & Duodenal GISTs; Epithelioid Pattern GISTs)
 - Exon 12 Deletions/Substitutions <5%
 - Exon 14 Substitutions 1%
 - Exon 18 Substitutions/Deletions 10%
 - Majority of PDGFRA GISTs
 - Most Common Variant D842V; Imatinib Resistant
- No Kit or PDGFRα Mutation 15-20%
 - Typical Finding in NF1 GISTS, Carney Triad, Carney-Stratakis Syndrome and Pediatric GISTS

Pediatric Vs Adult GIST
Table 2. Differentially expressed genes in pediatric GISTs in comparison with adult WT GISTs

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Gene title</th>
<th>Fold change</th>
<th>Chromosomal location</th>
<th>Gene ontology biological process</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRLF1</td>
<td>Cytokine-receptor-like factor 1</td>
<td>186.2</td>
<td>19p12</td>
<td>Antimicrobial humoral response</td>
</tr>
<tr>
<td>BAALC</td>
<td>Brain and acute leukemia, cytoplasmic</td>
<td>40.93</td>
<td>8q22.3</td>
<td></td>
</tr>
<tr>
<td>FGFR4</td>
<td>Fibroblast growth factor 4</td>
<td>18.88</td>
<td>11q33.3</td>
<td>Cell proliferation</td>
</tr>
<tr>
<td>PLAG1</td>
<td>Pleomorphic adenoma gene 1</td>
<td>16.63</td>
<td>8q12</td>
<td></td>
</tr>
<tr>
<td>IGFR1</td>
<td>Insulin-like growth factor 1 receptor</td>
<td>10.06</td>
<td>15q25</td>
<td>Positive regulation of cell proliferation</td>
</tr>
<tr>
<td>FGFR3</td>
<td>Fibroblast growth factor 3</td>
<td>9.913</td>
<td>11q13</td>
<td>Cell proliferation</td>
</tr>
<tr>
<td>GJB8</td>
<td>Glycine receptor, p</td>
<td>17.94</td>
<td>4q31.3</td>
<td>Receptor linked signal transduction</td>
</tr>
<tr>
<td>NEFL</td>
<td>Neurofilament, light polypeptide 68 kDa</td>
<td>15.84</td>
<td>8p21</td>
<td></td>
</tr>
<tr>
<td>NRCAM</td>
<td>Neuronal cell adhesion molecule</td>
<td>14.95</td>
<td>7q21.1</td>
<td>Neuronal migration</td>
</tr>
<tr>
<td>NELL1</td>
<td>NEL-like 1 (chicken)</td>
<td>12.67</td>
<td>11p15.2</td>
<td>Cell adhesion, neurogenesis</td>
</tr>
<tr>
<td>RTN1</td>
<td>Reticulin 1</td>
<td>11.87</td>
<td>14q21</td>
<td>Neuron differentiation</td>
</tr>
<tr>
<td>MAGF4J</td>
<td>Human MAGF-6 antigen (MAGE6)</td>
<td>11.51</td>
<td>Xq28</td>
<td></td>
</tr>
<tr>
<td>RELN</td>
<td>Reelin</td>
<td>8.74</td>
<td>7q22</td>
<td>Cell adhesion, development</td>
</tr>
<tr>
<td>FGFR18</td>
<td>Fibroblast growth factor 18</td>
<td>5.999</td>
<td>5p14</td>
<td>Regulation of transcription</td>
</tr>
</tbody>
</table>

Table 3. Validation by quantitative reverse transcription-PCR of selective overexpressed genes

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Gene title</th>
<th>Reverse transcription-PCR</th>
<th>Microarray</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGFR1</td>
<td>Insulin-like growth factor 1 receptor</td>
<td>6.9</td>
<td>10.9</td>
</tr>
<tr>
<td>BAALC</td>
<td>Brain and acute leukemia, cytoplasmic</td>
<td>29.1</td>
<td>40.0</td>
</tr>
<tr>
<td>FGFR4</td>
<td>Fibroblast growth factor 4</td>
<td>5.8</td>
<td>18.9</td>
</tr>
<tr>
<td>PLAG1</td>
<td>Pleomorphic adenoma gene 1</td>
<td>13.5</td>
<td>16.6</td>
</tr>
<tr>
<td>NELL1</td>
<td>NEL-like 1 (chicken)</td>
<td>32.6</td>
<td>12.7</td>
</tr>
</tbody>
</table>

*Fold change is the expression in pediatric GISTs relative to that in the adult WT tumors.

Table 4. Genes Expressed Differentially in Children and Young Adults Versus the Older Adult Control Group

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>P Value</th>
<th>FC</th>
<th>Location</th>
<th>Molecular Function (GO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIKK1</td>
<td>Phosphatidylinositol 4-kinase, alpha 1 (muscle)</td>
<td>4.6E-09</td>
<td>3.76</td>
<td>Chr:1q21.2</td>
<td>phosphatidylinositol 4-kinase, alpha 1 (muscle)</td>
</tr>
<tr>
<td>ABCG2</td>
<td>ATP-binding cassette, sub-family G, member 2</td>
<td>4.3E-07</td>
<td>-12.25</td>
<td>Chr:1q21.1</td>
<td>ATP-binding cassette, sub-family G, member 2</td>
</tr>
<tr>
<td>RAB3B</td>
<td>RAB3B, member RAS oncogene family</td>
<td>5.0E-07</td>
<td>-22.28</td>
<td>Chr:1q14</td>
<td>RAB3B, member RAS oncogene family</td>
</tr>
<tr>
<td>MTF2</td>
<td>Microphthalmia-associated transcription factor</td>
<td>5.0E-07</td>
<td>2.04</td>
<td>Chr:1q44</td>
<td>Microphthalmia-associated transcription factor</td>
</tr>
<tr>
<td>FZD2</td>
<td>Frizzled homolog 2 (Drosophila)</td>
<td>2.0E-06</td>
<td>12.22</td>
<td>Chr:1q21.1</td>
<td>Frizzled homolog 2 (Drosophila)</td>
</tr>
<tr>
<td>ASGR1</td>
<td>Asialoglycoprotein receptor 1</td>
<td>2.0E-06</td>
<td>14.89</td>
<td>Chr:1q21.3</td>
<td>Asialoglycoprotein receptor 1</td>
</tr>
<tr>
<td>NRG4</td>
<td>Nerve growth factor 4</td>
<td>9.0E-06</td>
<td>16.71</td>
<td>Chr:1q21.1</td>
<td>Nerve growth factor 4</td>
</tr>
<tr>
<td>GPRC5B</td>
<td>G protein-coupled receptor, family C, alpha 5</td>
<td>5.0E-05</td>
<td>2.22</td>
<td>Chr:1q21.1</td>
<td>G protein-coupled receptor, family C, alpha 5</td>
</tr>
<tr>
<td>CDKN3A</td>
<td>Cyclin-dependent kinase inhibitor 2A</td>
<td>5.0E-05</td>
<td>2.50</td>
<td>Chr:1q21.1</td>
<td>Cyclin-dependent kinase inhibitor 2A</td>
</tr>
<tr>
<td>FOXD1</td>
<td>Forkhead box D1</td>
<td>6.0E-05</td>
<td>13.13</td>
<td>Chr:1q21.1</td>
<td>Forkhead box D1</td>
</tr>
<tr>
<td>DPT</td>
<td>Dermatopontin</td>
<td>8.0E-04</td>
<td>-36.19</td>
<td>Chr:1q21.2</td>
<td>Dermatopontin</td>
</tr>
<tr>
<td>PDGFRA</td>
<td>Platelet-derived growth factor receptor alpha</td>
<td>1.0E-05</td>
<td>-39.39</td>
<td>Chr:1q21.1</td>
<td>Platelet-derived growth factor receptor alpha</td>
</tr>
<tr>
<td>IGFR1</td>
<td>Insulin-like growth factor 1 receptor</td>
<td>1.39E-03</td>
<td>14.22</td>
<td>Chr:1q21.1</td>
<td>Insulin-like growth factor 1 receptor</td>
</tr>
<tr>
<td>GPR30</td>
<td>G protein-coupled receptor B</td>
<td>0.00E-03</td>
<td>-16.32</td>
<td>Chr:1q21.3</td>
<td>G protein-coupled receptor B</td>
</tr>
<tr>
<td>ANK3</td>
<td>Ankyrin 3, member of Rassf family</td>
<td>0.00E-05</td>
<td>10.56</td>
<td>Chr:1q21.1</td>
<td>Ankyrin 3, member of Rassf family</td>
</tr>
<tr>
<td>GLI1</td>
<td>GLI1, generator-related 1 (glioma)</td>
<td>0.00E-04</td>
<td>-6.00</td>
<td>Chr:1q21.1</td>
<td>GLI1, generator-related 1 (glioma)</td>
</tr>
</tbody>
</table>

*Selective discriminatory genes are listed according to their gene designation, p value, fold change (FC) pediatric and young adult vs. older adult group, and molecular function.
GIST Pathway

- **Stable genome** (Very few cytogenetic changes)
- **Overexpression of** KIT, PDGFRA, FGFR1, PLCγ1, NTRK1, NTRK3
- **Loss of chromosome 1p, 14q, 22q (early events)**
- **Multiple additional chromosomal aberrations** (including CNVs in chromosomes 2, 4, 6, 8, 10, 15, 18)

Characteristics
- Greater % Female
- Epithelioid Morphology
- Gastric
- Multi Focal

KIT/PDGFRα Wild-type

KIT/PDGFRα Mutation

- Greater % Male
- Spindle Morphology
- Equal Male: Female
- Spindle Morphology
- Single Primary Tumor

GIST

<table>
<thead>
<tr>
<th></th>
<th>Pediatric</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>12.4 y</td>
<td>> 40 y</td>
</tr>
<tr>
<td>Sex (F:M)</td>
<td>2.7:1</td>
<td>1:1</td>
</tr>
<tr>
<td>Most frequent cell type</td>
<td>Epitheloid 40.7%</td>
<td>Spindle 70%</td>
</tr>
<tr>
<td>Receptor mutations</td>
<td>Rare, suggestive of syndromal occurrence</td>
<td>> 80%</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Chronic anemia 86.4% palpable tumor 11.9% abdominal pain 15.3%</td>
<td>GI-bleeding 40% palpable tumor 40% abdominal pain 20%</td>
</tr>
<tr>
<td>Risk category</td>
<td>Size (cm)</td>
<td>Mitoses (HPF)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>Very low risk</td>
<td><2</td>
<td>≤ 5/50</td>
</tr>
<tr>
<td>Low risk</td>
<td>2–5</td>
<td>≤ 5/50</td>
</tr>
<tr>
<td>Intermediate risk</td>
<td>≤ 5</td>
<td>5–10/50</td>
</tr>
<tr>
<td></td>
<td>5–10</td>
<td>≤ 5/50</td>
</tr>
<tr>
<td>High risk</td>
<td>>5</td>
<td>>5/50</td>
</tr>
<tr>
<td></td>
<td>>10</td>
<td>Any size</td>
</tr>
</tbody>
</table>

- **Recurrence**
 - Local: 20%
 - Metastatic: 4%

- **Survival**
 - Alive: 80%
 - DOD: 4–13%
 - DOC: 4%
 - Unknown: 12%

Case History

- 6 Month Old Boy
- Recent Onset of Vomiting, Abdominal Pain & Cramping
- Intermittent Rectal Bleeding
- Diagnostic Imaging:
 - Intussusception
Hamartomatous Polyp??
Wait A Minute.....
- No Mucocutaneous or Nailbed Pigmentation
- LKB1/STK11 Genetic Mutation Testing Negative

Diagnosis:
- Hamartomatous Polyp
- Cystic Nephroma
- ???
PPB Family Tumor Susceptibility Syndrome

- PPB Family Tumor Susceptibility Syndrome: Multiple Tumors Exist or Develop.
 - Bilateral and/or Multifocal Lung Cysts in 15% of children
 - Bilateral Type I PPB In Several Cases
 - Cystic nephroma: Most Common Non-Pulmonary Neoplasm (~10% in PPB Patients or Relatives)
 - *Small Subset: PPB, Cystic Nephroma and Small Bowel Polyps
 - Several PPB Patients with Sertoli-Leydig Cell Ovarian Tumors or Nasal Chondromesenchymal Hamartoma
 - Unique Set of Diseases Different than Other Familial Neoplasia Syndrome

PPB Family Tumor Susceptibility Syndrome

- Treatment-Related Second Malignant Neoplasms
 - Not Different from Other Cancer Survivors
 - 3 PPB Children With Apparent Treatment-Related Malignancies:
 - Glioblastoma Multiforme (radiation PPB brain metastasis)
 - Thyroid Carcinoma After Chest Radiation
 - AML After Chemotherapy for PPB (Alkylation Agents & Etoposide)
Burkitt Lymphoma

- Aggressive B-cell NHL with Extremely High Proliferation Index & Characteristic Tranlocation (8q24- MYC)
- Endemic (most cases) Associated with Early EBV Infection and Increased EBV Viral Loads
 - Promoters: Plasmodium Falciparum, Arbovirus and Plant Tumor Promoters
- Sporadic: EBV in 20-30% of Cases
 - Low Socioeconomic Status and Early EBV Infection
- Immunodeficiency: EBV in 30-40%
 - More Common in HIV: May Occur with High CD4 T-Cell Counts in HIV
 - Polyclonal B-Cell Activation in HIV and Malaria

Burkitt Lymphoma

- Endemic BL
 - 4-10/100,000 Children; 2M:1F
 - Most <15 Years of Age
 - Equatorial Africa & New Papua-Guinea
- Sporadic BL
 - 40% of All Childhood Lymphomas
 - 0.3/100,000 Children, 3M:1F
 - Industrialized Nations
 - Caucasian>Asian or African-American
- Immunodeficiency BL: Low Incidence
 - Decreasing Lymphoma Incidence in HIV Children: Highly Active Anti-Retroviral Therapy
Burkitt Lymphoma

- **Endemic BL:**
 - Jaw/Facial Bones (50-60%), Breast, Abdomen, Bone Marrow (10%)
 - Typically Lack Leukemic Presentation

- **Sporadic BL:**
 - Abdominal Mass (Ileocecal Region)
 - Ovaries, Kidneys, Breasts
 - Jaws Rarely

- **Immunodeficiency BL:**
 - Nodal and Bone Marrow

Burkitt Lymphoma

- Often Present with Bulkly Disease (Stage III/IV)
- Symptoms Present for Few Weeks
- Immunophenotype: IgM, B-Cell Antigens (CD19, CD20, CD22, CD79a), CD10, CD38, CD45, Bcl-6, Ki-67 >95%
- Rarely Weak Bcl-2, MUM1/IRF-4 in Subset, Lack TdT
- Recommended IHC Panel: CD10, CD20, Bcl-6, Bcl-2, Ki67, EBER-1 (in situ), EBV-LMP
Burkitt Lymphoma

- Molecular and Cytogenetics
 - MYC Translocations (8q24) with IgH (80%, 14q32), Kappa light Chain (15%, 2p11), Lambda Light Chain (5%, 22q11), NonIg Partners Rare
 - 10% Lack MYC Translocation by FISH Alone
 - Other Genetic and Epigenetic Alterations
 - BAX, P16, p53, p73, p130/Rb2, Bel-6
 - Complex Cytogenetics More Common in Adults
 - Additional Abnormalities Correlate with Poor Prognosis

- Differential Diagnosis:
 - Diffuse Large B Cell Lymphoma
 - Lymphoblastic Leukemia Lymphoma
 - Unclassified B Cell Lymphoma
 - Small Round Cell Tumor: (Ewing Tumor, Neuroblastoma, Rhabdomyosarcoma)
 - Myeloid Sarcoma

- Prognosis: Highly Aggressive, But Curable
 - Better Prognosis for Children than Adults

- Treatment: Intensive Chemotherapy and Intrathecal Prophylaxis
 - Anti-CD20 (Rituximab)
 - Cure Rate Up To 90% Low Stage & 60-80% in Advanced Stage
 - Relapses Typically Occurs 1 Year from Diagnosis

Burkitt Lymphoma

- Molecular and Cytogenetics
 - MYC Translocations (8q24) with IgH (80%, 14q32), Kappa light Chain (15%, 2p11), Lambda Light Chain (5%, 22q11), NonIg Partners Rare
 - 10% Lack MYC Translocation by FISH Alone
 - Other Genetic and Epigenetic Alterations
 - BAX, P16, p53, p73, p130/Rb2, Bel-6
 - Complex Cytogenetics More Common in Adults
 - Additional Abnormalities Correlate with Poor Prognosis

- Differential Diagnosis:
 - Diffuse Large B Cell Lymphoma
 - Lymphoblastic Leukemia Lymphoma
 - Unclassified B Cell Lymphoma
 - Small Round Cell Tumor: (Ewing Tumor, Neuroblastoma, Rhabdomyosarcoma)
 - Myeloid Sarcoma

- Prognosis: Highly Aggressive, But Curable
 - Better Prognosis for Children than Adults

- Treatment: Intensive Chemotherapy and Intrathecal Prophylaxis
 - Anti-CD20 (Rituximab)
 - Cure Rate Up To 90% Low Stage & 60-80% in Advanced Stage
 - Relapses Typically Occurs 1 Year from Diagnosis
Carcinoid Tumors: What’s The Big Deal?

- Incidence: 2 per 100,000 per Year
- Pernicious Anemia & Atrophic Gastritis: Carcinoid Tumors (11%)
- Zollinger-Ellison Disease & MEN 1
 - LOH on chromosome 11q13 (MENIN)
 - 26-78% Carcinoid Tumors
- Associated with Other Tumors (13%)

Carcinoid Tumors

- GI carcinoids:
 - Incidental Finding at Appendectomy (1 in 200-300)
 - Recurrent Abdominal Pain
 - Melena and Bleeding (Rectal)
- Bronchopulmonary carcinoids:
 - Hemoptysis, Pneumonia
 - Cough Only
- 76% of Carcinoids Found at Autopsy
Carcinoid Syndrome

- Occurs in 2-20%
 - Flushing Attacks (23-65%)
 - Erythema Upper Body Associated with Other Symptoms
 - Spontaneous or Triggered by Stress, Foods, Exercise
 - May last for minutes or hours
 - Diarrhea (32-75%)
 - Cardiac Manifestations (11-66%)
 - Fibrosis of Endocardium (Heart Failure)
 - Other Symptoms (Asthma-Like Attack, Skin Lesions, Arthralgias, Mental Status Changes)

Pediatric Carcinoid Tumors

- Most Common Tumor of Appendix
- Second Most Common GI Tract Tumor After Lymphoma
- 1:100,000 in Children Per Year
- Acute Appendicitis Common Presenting Symptom
- Usually Localized at Appendix Tip
- Small Localized Tumors: 100% EFS
- Locally Invasive Tumors: Ileocecal Resection Adequate Most Children, No Long-Term Follow-Up Available
Prognostic factors:

Carcinoids

- Tumor Site
 - Appendix > Small Intestine > Colorectal > Liver/Pancreas
- Tumor Size (survival)
 - <1 cm: 100%; 1.1-2.0 cm: 82%; >2 cm: 39%
- Depth of Invasion
- Metastases
 - (Liver Metastases, Unfavorable)
- Mitotic Index
 - <10/10 HPF, Favorable
Appendicæal Carcinoids: Survival

- Small Tumors (<1cm): 100% Event Free Survival (EFS)
- Localized Tumors (regardless of size): 94% EFS
- Regional Metastases: 84.6% EFS
- Distant Metastases: 33.7% EFS
- Slowly Growing Tumor
 - 5-Yr Survival Rate May Not Be Indicative of True Risk for Recurrence
Carcinoid Treatment

- Tumor Size < 1 cm
 - Appendectomy Alone
- Tumor Size 1 to 2 cm
 - Unclear
 - Aggressive Surgery With Serosal Invasion
- Tumor Size > 2 cm
 - Full Cancer Surgery
 - Right Hemicolectomy
 - Lymph Nodes

Smooth Muscle Tumors

- Arise in Association with Muscularis Mucosae or Propria
- Most Common in Esophagus and Colon
 - Adults: Esophagus with Tiny Seedling Leiomyomas In Inner Muscularis Propria on about 50% of Gastroesophageal Carcinoma Resections
 - Colonic Leiomyomas Typically Found with Screening for Colorectal Adenomas
- Well-Circumscribed, Whorled Cut Surface Similar to Leiomyomas at Other Sites
Smooth Muscle Tumors

- Smooth Muscle Differentiation
- Spindle Cells with Eosinophilic Cytoplasm and Blunt Nuclei
- “Perpendicularly” Oriented Fascicles (Herring Bone-Like)
- Minimal Mitotic Activity
- Immunophenotype:
 - SMA, Desmin, h-Caldesmon >70%
 - Focal: Keratin, EMA, CD34, S100
 - Negative: CD117

Smooth Muscle Tumors

- Pediatric Leiomyomas
 - HIV, Immune Suppression, Immunodeficiency Disorders, Solid Organ Transplantation
 - EBV-Association: CD21 Receptor on Smooth Muscle Cells
 - Tumors Tend To Be Multicentric – Not Mets
 - Involve Parenchyma Organs Rather than Soft Tissue
 - Bland But with Primitive Round Cell Component
 - Variable Mitotic Activity & Lymphocytic Infiltrate
 - May Have Perivascular Myopericytoma Growth Pattern
 - Better Behavior Than Conventional Type
Smooth Muscle Tumors

Differential Diagnosis:
- Gastrointestinal Stromal Tumor, GI Schwannoma, Benign Fibroblastic Polyp (perineurioma), Granular Cell Tumor, Leiomyosarcoma

Prognostic Factors In Pediatrics
- Improvement in Immune Status
 - Highly Active Anti-Retrovirals
 - Decreased Immunosuppression
 - Bone Marrow Transplantation
 - Gene Therapy
- Location, Size, Resectability